
UNCLASSIFIED

Date 10/01/2004

Microsoft Office XP/2003
Executable Content Security Risks and

Countermeasures

Architectures and Applications Division
of the

Systems and Network Attack Center (SNAC)

Information Assurance Directorate

Author: National Security Agency
Brett Sovereign ATTN: I333

9800 Savage Rd. STE 6704
Ft. Meade, MD 20755-6704

(410) 854-6191 commercial
(410) 854-6510 facsimile

W2Kguides@nsa.gov

UNCLASSIFIED

UNCLASSIFIED

Abstract

This paper provides an overview of the security threats from embedded scripts and binary
executables in Office 2003/XP files. It also recommends ways to mitigate these threats
with an eye to minimizing operational impact to users. The four applications covered in
this paper are:

Microsoft Word—the word processing application
Microsoft Excel—the spreadsheet application
Microsoft PowerPoint—the presentation application
Microsoft Outlook—the mail/groupware application

Microsoft Office 2003 and XP provide incremental improvements to security compared
to Office 2000 as well as better administration tools. This document describes these
improvements and features, and suggests how best to configure Office XP/2003 and 2003
to counter most executable content attacks.

Disclaimer

GUIDANCE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE EXPRESSLY DISCLAIMED. IN NO EVENT SHALL
THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Trademark Information

Microsoft, Office 97, Office 2000, Office XP, Word, Excel, PowerPoint, Access, Outlook
are either registered trademarks or trademarks of the Microsoft Corporation in the U.S.A
and other countries. All other names are registered trademarks or trademarks of their
respective countries.

UNCLASSIFIED
 2

UNCLASSIFIED

Table of Contents

ABSTRACT... 2

DISCLAIMER... 2

TRADEMARK INFORMATION ... 2

TABLE OF CONTENTS ... 3

INTRODUCTION... 5

DEFINITIONS AND BACKGROUND .. 5

Executable Content and Mobile Code .. 5

MS OFFICE SUITE VERSIONS—A QUICK GUIDE FOR THE PERPLEXED............................. 6

EXTENSIONS OF OFFICE APPLICATIONS ... 7

MACRO LANGUAGES IN WORD, EXCEL, AND POWERPOINT... 7

TEMPLATES AND ADD-INS ... 7

Templates and Add-Ins in Excel ... 8

Templates in PowerPoint.. 8

Templates in Word .. 8

COM Add-Ins .. 9

Embedded Objects .. 9

HTML Scripting .. 9

EXECUTABLE CONTENT IN MICROSOFT OUTLOOK... 9

Executable Content in Mail Messages .. 10

Malicious File Attachments .. 10

Automating Outlook .. 10

THREAT OVERVIEW .. 10

DEFINITION OF A MACRO VIRUS .. 10

Example... 11

COMMON OFFICE XP/2003 SECURITY FEATURES ... 13

SECURITY IN OFFICE 97 ... 13

SECURITY IN OFFICE XP/2003—WORD, EXCEL, AND POWERPOINT 13

Security Levels .. 14

Digital Signatures on VBA.. 15

Trusted Sources... 16

Trusting Installed Templates and Add-ins .. 17

Outlook Security Enhancements ... 18

ADMINISTRATIVE CONTROL OF SECURITY SETTINGS 18

REGISTRY SETTINGS .. 19

OTHER SECURITY FEATURES ... 19

UNCLASSIFIED
 3

UNCLASSIFIED

CONFIGURATION RECOMMENDATIONS.. 20

BASELINE SETTINGS .. 20

Patches and Hotfixes... 20

REMOVING/DISABLING OF VBA—HIGHEST SECURITY, LEAST FUNCTIONALITY 21

HIGH SECURITY PLUS DUMMY CERTIFICATE (VERY HIGH)... 22

DEPLOYMENT AND MAINTENANCE OPTIONS.. 22

APPENDIX A REGISTRY SETTINGS FOR OFFICE XP/2003 24

MAXIMUM SECURITY—NO MACROS OR ADD-INS CAN BE RUN BY THE USER! 25

REFERENCES AND RESOURCES .. 26

SUGGESTED READING .. 26

UNCLASSIFIED
 4

UNCLASSIFIED

Introduction

Microsoft Office is the most used suite of office productivity applications, and it is
estimated that there are more than 7 million Office Macro viruses in the wild. Infected
Office documents can spread rapidly in the age of ubiquitous e-mail and widespread
usage of Office. The NSA has previously published reports describing the Executable
Content threats of Microsoft Office 97 and 2000, which are available at
http://www.nsa.gov [NSA97] [NSA02]. This paper is an update covering Microsoft
Office XP and 2003. The following four components are covered in this paper:

Microsoft Word—the word processing application

Microsoft Excel—the spreadsheet application

Microsoft PowerPoint—the presentation application

Microsoft Outlook—the mail/groupware application

The Microsoft Office XP/2003 security model does not differ substantially from that
introduced in Office 2000, but does include a number of administrative improvements.
This document describes the security risk of Office documents, the countermeasures
available within Office XP/2003, and suggestions on how best to configure and use the
security in Office XP/2003 to prevent most executable content attacks.

Definitions and Background

Executable Content and Mobile Code
Before discussing the specific Executable Content threats in Office XP/2003, it is useful
to have a consistent terminology. Researchers and analysts have used slightly differing
definitions over the years, leading to confusion in some cases. For this paper, an
executable content format is one that supports execution of code as a side effect of
manipulating or viewing the data or its presentation. Generally this execution is done
automatically or with minimal user intervention. The document may have the code
embedded in it, or may contain references to either local code or to mobile code.

Mobile code refers to data that is obtained from remote systems, transferred across a
network, and then downloaded and executed on a local system without explicit
installation or initiation of execution by the recipient. The last part of the definition is to
distinguish mobile code from the user-invoked downloading over a network of a binary,
which is then run. By this definition, not all mobile code is executable content, and vice
versa. However, the most prevalent and simplest form of mobile code is e-mail with
executable content attached. In addition, executable content formats such as web pages
with associated Java applets generally must download the applets on the reference. Most
executable content threats utilize the simplest mobile code delivery systems such as e-
mail and web pages to spread quickly.

UNCLASSIFIED
 5

UNCLASSIFIED

Microsoft Office versions 95 and higher include the Visual Basic for Applications (VBA)
language in Word, Excel, Outlook and PowerPoint.1 VBA is a subset of Visual Basic and
is an interpreted extension language that allows a user to customize individual Microsoft
Office applications. Microsoft licenses VBA to other software vendors to include in their
products, and the security concerns are similar.

In addition, modern versions of MS Office allow the embedding of binary objects in
documents, which can be other Office documents, or specialized graphic controls. These
objects can be embedded in the document, locally available (such as standard MS form
controls), or linked across a network. These will be discussed in detail later.

Since the implementation of VBA allows a data format (e.g., a Word document) to
include code that executes automatically without initiation by the user (e.g., an AutoOpen
macro that starts on the event of a document opening), VBA is executable content. VBA
enabled formats also fit the definition of mobile code since documents, spreadsheets, and
presentations can be sent over a network as e-mail attachments or can be opened in a web
browser such as Internet Explorer.

MS Office Suite Versions – A Quick Guide for the Perplexed

There is frequently confusion over versioning in Office due to a variety of name changes
to the versions over the years. The naming of Office XP ended a long run of year
versioning of Office, from Office 95, 97, to 2000.2 Microsoft has stuck to a simple
number scheme in its internal development, and since these numbers are frequently seen
in registry keys, files, and file folder names, an administrator needs to know them. The
actual product names, however, have changed to reflect different marketing strategies.
The Office XP suite is version number 10.0, while Office 2003 is version 11.
Applications in the Office XP Suite have the year 2002 attached rather than XP; for
example, Word 2002 is in the suite. Office 2000 is version 9.0, and Office 97 is version
8.0; applications in these suites match their marketing name to the suite name, so
PowerPoint 97 is in the Office 97 suite.

The last three versions of Office for Apple Macintosh are Office 98, Office 2001, Office
X, and Office 2004. The Mac versions of Office were not evaluated for this paper.

 Access, FrontPage, and Visio also include VBA, but those products will not be covered in this
paper since their security features and settings are different from the other main components of
Office XP/2003. Prior to Office 95, only Microsoft Word 6.0 included an application extension
language, WordBasic. The Office 95 implementation of VBA and Word 6.0’s WordBasic will not
be covered in any detail in this paper.
2 The security implications of new applications in Office 2003 such as InfoPath will be considered
in an upcoming paper.

UNCLASSIFIED
 6

1

UNCLASSIFIED

Extensions of Office Applications

Macro Languages in Word, Excel, and PowerPoint

The Microsoft Office applications all have extensive built-in features. However, there are
times when a user may want to customize or add to that functionality. For example, in
Word there is no built-in button to print just the current page. The user has to select the
File menu, select Print, select Current Page, and select Okay—four mouse clicks. A
button on the toolbar would reduce that task to only one mouse click. The user can record
those four actions in a macro and assign that macro to a button extending the
functionality of Word.

There are many repetitive tasks that can be automated with macros, some as simple as the
print-current-page button example and some extremely complex, such as linking data
across application platforms. All of these automations are event driven—the user attaches
code to some event (like a mouse click), and the code executes when the user initiates
that event. That code is called a macro. Along with mouse and button clicks, each Office
application also includes a set of automatic events that the user can customize with VBA
code, such as document open and document close in Word. Unlike a button or menu
choice, auto events do not require any explicit user action other than, for example,
opening the document. These auto events are the crux of the VBA executable content
problem because the user has little control over them. For simplicity, all event-driven
VBA code will be called macros.

In addition, modern versions of MS Office allow the embedding of binary objects in
documents, which can be other Office documents (discussed below), or specialized
graphic controls such as dialog boxes, or form elements. These objects can be embedded
in the document, locally available (such as standard MS form controls), or linked across a
network. There are many ActiveX controls intrinsic to Office, but the user can add
custom ActiveX controls as well (see COM Add-Ins below). Although there are
differences between embedded ActiveX controls and VBA macros, they both trigger the
same security mechanisms in Office products. For simplicity in this document,
customization of an Office document refers to both VBA macros and embedded ActiveX
controls.

Templates and Add-Ins

A template is a special version of an Office document that can store styles, macros, and
boilerplate code. The true purpose of a template is to be a convenient central document
to contain common styles, headers and footers, and other customizations that will be used
repeatedly with a particular kind of document, such as a memo or report.

On Windows 95/98/ME installations and older versions of Office (prior to 97), there is a
central directory per application for common templates. When one template is
compromised, or infected with a virus, it can affect all users because all users access the

UNCLASSIFIED
 7

UNCLASSIFIED

same templates. Office XP/2003 installed on a system with multi-user capabilities is
slightly different. There is still a central template directory for many typical templates
(such as report.dot or letter.dot); however each user also has their own template directory.
These templates are stored in each user’s space rather than the central directory. While
potentially limiting the number of users impacted by an infected template file, this can
make the propagation path of a virus more difficult to determine.

Templates and Add-Ins in Excel
Excel templates (generally ending in .xlt) can be used for creating new documents and for
holding macros. They have the same format as a regular workbook. When an Excel
template is opened from Windows Explorer or within Excel, a new workbook created
which is a copy of the template. Personal.xls is a workbook in Excel that is opened by
default each time the user opens an Excel document. This special workbook is not created
on installation of the application. The first time each user creates or records a macro,
Excel creates a Personal.xls file for that user in the XLSTART directory under Excel. On
a multi-user system such as Windows 2000/XP, each user has their own XLSTART
directory, typically C:\Documents and Settings\joeuser\Application
Data\Microsoft\Excel\XLSTART. Excel opens any workbook or macro files in this
directory when started.

Excel add-ins can hold macros and custom toolbars for use within Excel, and work
somewhat differently than templates. These add-ins have the same structure as an Excel
workbook, but the workbook space will no longer be visible to the user. The Excel add-
ins end with the extension .xla or .xll, and can be loaded automatically on startup if
placed in the XLSTART directory, or loaded manually from the
<USER>\Microsoft\Addins folder.

Templates in PowerPoint
PowerPoint templates work almost identically to those in Excel. They have the same
structure as a PowerPoint presentation, and are generally used to hold boilerplate text,
styles, and macros. Documents created from a template are copies of the template at the
time of creation, and later changes to the template do not impact the document.
PowerPoint add-ins (ending with .ppa) have a slightly different format. While they are
created from a regular PowerPoint presentation, they are saved in a format that is not
editable by PowerPoint. The functionality is the same, however, and they are located in
the same Addins directory.

Templates in Word
Word handles templates a little differently from the other Office applications. A Word
document can be “attached” to a corresponding template, generally at creation. Changes
in that template later may or may not be reflected in the document depending on whether
“Automatically Update Styles” is forced. In addition, all Word documents are linked to a
special template named Normal.dot, which makes it a prime target for attack. There is a
special directory for templates with each Word installation. Common templates are stored
in a central area, such as C:\Program Files\Microsoft Office\Templates. On
multi-user systems such as Windows 2000, each user has a directory for special templates

UNCLASSIFIED
 8

UNCLASSIFIED

such as Normal.dot, which is typically C:\Documents and
Settings\joeuser\Application Data\Microsoft\Templates.

Word add-ins (also called global templates in some Microsoft documentation) have the
same extension (.dot) as templates above. They hold common macros or tools but not
styles or boilerplate text. They can be automatically loaded for use in the \Startup folder,
or located for use in <USER PROFILE>\Application Data\Microsoft\Addins directory.

COM Add-Ins
A COM add-in is a compiled .dll that extends an Office application, generally packaged
as an ActiveX control. Add-ins can be user written or supplied by a software vendor, and
can be written to extend multiple Office applications. The purpose and functionality of
an add-in is similar to a macro, except that an add-in is an actual binary library that must
be registered on the desktop system for it to be invoked. COM add-ins can be digitally
signed, and the Office settings controlling templates and macro security also control add-
ins. Microsoft provides a number of built-in controls for the Office suite.

Embedded Objects
Users can embed objects in Office documents, such as an Excel spreadsheet embedded in
a Word document. Macros and customizations in embedded objects are not detected
when the document is loaded. When the user activates that embedded object (normally by
a mouse click on the object), the security settings of the application associated with that
object will be invoked. So in the above example, the security settings of Excel would
apply to an embedded Excel spreadsheet in Word and would not be invoked until the user
activates the embedded spreadsheet. For this reason, administrators must be careful to
configure the security settings of each Office application to an appropriate level and not
assume one is safer than another.

HTML Scripting
Word, Excel and PowerPoint 2000 and higher include HTML scripting. This gives users
the ability to save Office documents as web documents and edit them with the Microsoft
Script Editor. Users can add VBScript and JavaScript to documents within the Script
Editor, and these scripts do not display any warnings to the user. However, these scripts
will only run when viewed by an appropriate web browser, such as Internet Explorer or
Netscape. The security of the document is subject to the security settings of the browser.

Executable Content in Microsoft Outlook

Outlook is Microsoft’s premier e-mail and personal information application. Outlook
versions 2000 and later support VBA, but this support has a much different threat profile
than Word, Excel, or PowerPoint. Macro code is stored separately from the Personal
Address Book files in a specific user VBA project, VBAProject.OTM, which is not
designed to be deployed elsewhere. However, both macro viruses and worms have used
the ability to script Outlook in order to propagate to new targets. Outlook versions 97
and higher support scripting in HTML mail, which is also rendered by Internet Explorer
components.

UNCLASSIFIED
 9

UNCLASSIFIED

Executable Content in Mail Messages
Outlook 2002/2003 supports HTML format in mail messages, allowing a user to create
highly formatted messages or use stationery that provides a background design for
messages. The format for mail messages is set on the Mail Format Tab from the Tools →
Options menu. This opens a number of possibilities for executable content, since HTML
supports languages such as VBScript, Java applets, and JavaScript. Mobile code written
in these languages can be included or referenced within the HTML. Outlook 2002/2003
uses IE to render these messages, but places them in a Restricted Zone so that ActiveX
controls will not work.

Malicious File Attachments
The most common way Outlook has been used in executable content attacks is through
attachments. Infamous and widespread malicious code attacks utilized Outlook file
attachments as a transport mechanism. The ILOVEYOU worm, for example, traveled as
a Visual Basic Script (.vbs) file that, upon launching, was interpreted and run by the
Windows Scripting Host. The worm then took numerous actions to compromise the
integrity of the victim’s computer and proliferated through e-mail to everyone listed in
the compromised user’s address book

Automating Outlook
Outlook has also been used as an Automation Object by macros and worms in order to
send malicious e-mail. The Address Book provides a ready resource of new targets.

Threat Overview

Definition of a Macro Virus

A generic computer virus is a bit of code that propagates by copying itself into other
programs. Classic computer viruses are written in binary; they append or prepend their
instructions to a binary on the system. When the infected binary is run, the virus’s
instructions are run. A virus generally consists of the propagation routine and a payload
of malicious commands to run on the local system.

A macro virus in Office resembles the classic virus translated to Office applications. It
relies on several features of Office: the functionality of VBA, the inclusion of VBA
within the document format, the use of local template files, and the event model for VBA
routines.

When run, routines in VBA have full access to all Win32 system functions, which
includes all File I/O, registry access, and networking code. One Office application can
also easily access resources for another Office application, for example a macro in a
Word document can easily access an Outlook address book or send e-mail with Outlook.
A macro can make any system call the user is allowed to make, read or modify any file
the user is allowed to access, or exfiltrate information.

Thus a classic macro virus works as follows: an infected document is opened for
viewing, and the AutoOpen event is fired. The virus’s routine is run, generally copying

UNCLASSIFIED
 10

UNCLASSIFIED

its instruction into the application’s default template or other likely documents. When
the user creates or opens other documents they will run the code as well. Meanwhile, the
payload can trigger on a time basis or as result of other events, and has full user access to
the local system.

Example
A typical route of a macro virus is simple—Word macros are spread by disseminating
infected Word documents most commonly as an e-mail attachment. An unsuspecting user
sees a message purportedly from a friend with a Word document attached, they open the
document which triggers the virus, the virus then sends itself to everyone in that user’s
address book. Word viruses can also propagate on shared physical media (floppies), or as
HTML links on a web page. When a user clicks a link that points to a Word document in
Internet Explorer, IE automatically runs Word if it is installed and opens the document
rather than asking if the user would like to download the document. If a user does not
know a link is a Word document, they are only protected if they have Word’s security
features turned on.

The following VBA code is a typical simplistic non-malicious macro virus:

Private Sub Document_Open()

Dim virusPath As String

Dim virusName As String

Dim VirusFileName As String

‘ get the name of the current document to attach to the e-mail
virusPath = ActiveDocument.Path
virusName = ActiveDocument.Name
VirusFileName = MydocPath + “\” + MydocName
‘ VirusFileName is now the full path and name of
‘ which active document
‘ contains this malicious macro. Now create a mail message,
‘ attach this document, and send it out to every address in
‘ the outlook address book!
Set olApp = CreateObject(“Outlook.Application”)
Set myNameSpace = olApp.GetNamespace(“MAPI”)
Set MyAddressList = myNameSpace.AddressLists(“Contacts”)
Set MyAddressEntries = MyAddressList.AddressEntries
Set MyMailItem = olApp.CreateItem(0)
Set MyAttachments = MyMailItem.Attachments
MyAttachments.Add VirusFileName, olByValue
For Each memberEntry In MyAddressEntries
MyMailItem.Recipients.Add (memberEntry)
Next
MyMailItem.Subject = “New Doc”
MyMailItem.HTMLBody = “<html> Hey, Check out this document. <P>

W </html>”

MyMailItem.Send

End Sub

Figure 1 shows the Outlook message produced by this code. The macro first determines
the full path name of the document that contains it, then opens the user’s Outlook address
book. For each address, the macro adds that address to the recipient list for an e-mail

UNCLASSIFIED
 11

UNCLASSIFIED

message with some simple text, attaches itself to that e-mail, then sends the e-mail. When
the users at the other end open their e-mail the virus is waiting for them in that
attachment, and it will then propagate to all of the addresses in those address books if the
user opens that file and runs the macro. Each user sees an e-mail message from someone
they know, and if the message is enticing enough they are likely to open the document. If
they do not have Word’s macro security mechanism turned on, they will execute the virus
without knowing.

Figure 1: Example of a Word macro accessing Outlook. The attached document has a
copy of the macro.

Customizations with VBA or ActiveX provide a powerful programming capability within
Office applications. An attacker can write a wide range of attacks from altering system
settings and exfiltrating information to dangerous denial of service attacks such as
deleting all files on a hard drive. By attaching the code to an automatic event, the attacker
can get the user to unknowingly execute the code with the full privileges of that user.

In previous versions of Office, Microsoft’s approach to prevent such attacks was to warn
the user when a document contained a customization. However, the user could ignore or
disable the warning. Thus security was heavily dependent on the user’s discretion. There
have been some significant viruses in the wild that took advantage of poor security
practices on the part of the user. With Office 2000 and higher, Microsoft has introduced
security levels and digital signatures, thus giving the system administrator a way to take
the user out of the loop. A system administrator now has more control over forcing a
particular security policy on the users.

UNCLASSIFIED
 12

UNCLASSIFIED

Common Office XP/2003 Security Features

This section covers security features common to Word, Excel, PowerPoint, and Outlook
to mitigate the virus threat.

Security in Office 97

Applications in Office prior to Office 97 had no mechanism to disable code. Office 97
uses a simple warning dialog box to alert users to the presence of VBA code or other
customization in an Office document (a Word, Excel or PowerPoint document). The user
can do one of three things: enable the code and view the document, disable the code and
view the document, or quit the document altogether.

There are a number of pitfalls to this approach to security: Users generally will not pay
attention to security warnings, or will turn them off altogether, especially when they are
saturated with such warnings.

The dialog box in Office 97 includes a checkbox for the user to disable all future
warnings. Once the warning is disabled, it is up to the user to take some explicit and non-
obvious action to re-enable it. The user has complete control over this feature; the system
administrator or security officer cannot enforce its use.

As an example of the inadequacy of this approach: both the Melissa and ILOVEYOU
viruses did not bypass the security warning, but rather took advantage of users who either
had the warning turned off or did not pay attention to it.

Once a user elects to disable the customization, there is no way from within an Office 97
product to view that code to see if it was harmless. This is an either-or choice; either the
user enables the code and risks an attack or the user disables the code and loses all
functionality that the code is supposed to provide without any way to determine if that
functionality is safe or necessary. There is no easy way to review the code and enable it if
it looks okay.

There is also no way to authenticate the source of the code. Code written by the user
triggers the same warning as code written by anyone else. This leaves the user with an
all-or-nothing approach to security.

Templates or add-ins that are installed in the appropriate directories do not generate a
security warning when they contain customizations since these are assumed to be safe.
For example, all Microsoft Word documents are based on a template called Normal.dot.
If that template has macros in it and is in the template directory, when the user opens a
document based on that template the macro warning will not fire and auto macros will
run.

Security in Office XP/2003 -- Word, Excel, and PowerPoint

Microsoft has improved the potential security in Office XP/2003 with the introduction of
digital signatures and three security levels (four in Office 2003).

UNCLASSIFIED
 13

UNCLASSIFIED

Security Levels
Microsoft Word, Excel, and PowerPoint in Office 2000 and higher allow the user to set
one of either three or four security levels—very high (in Office XP only), high (the
default), medium, or low (see figure 2).

Figure 2: Security dialog box in Office 2003 (Tools→Macro→Security)

Low: This setting provides no protection from executable content in an Office XP/2003
document. The application loads and runs all macros without warning the user. This
setting is marked “not recommended” by Microsoft, and shouldn’t be used under any
normal circumstance.

Medium: The medium security setting is virtually the same security that came with
Office 97. When an Office XP/2003 document contains any customization such as a
macro or ActiveX control, the user will see a warning dialog box and can choose to
enable the customization, disable it, or not open the document. This check is done only at
the time the document is first loaded and not when the macros actually run. However, the
check is done each time the document is loaded. The difference in Office 2000 and higher
is that there is no checkbox on the dialog box itself that allows the user to disable this
warning. The user must go through the menus, or edit the registry directly, to change the
security setting.

UNCLASSIFIED
 14

UNCLASSIFIED

If the user chooses to disable the macro, Office 2000 or higher does allow the user to
view the VBA source code. ActiveX controls are binary and so are still not easily
reviewed for malicious behavior.

High: Word, Excel and PowerPoint include the ability to digitally sign the VBA portion
of an Office document (see below). The high setting automatically and silently disables
all unsigned VBA code. If a document does have signed VBA code, the user is given the
choice of either trusting the source or disabling the code. As with the medium setting, the
user can view disabled VBA code. The DOD Mobile Code Policy [2] requires VBA
macros to be signed by an approved DOD certificate in order to be run under most
circumstances.

This setting removes the user’s discretion from the security mechanism. By automatically
disabling unsigned customizations, the user cannot “accidentally” enable a virus. A
problem with trusting sources is that once the user trusts a source, all documents with
signed code from that source are automatically trusted. The user receives no further
warnings when opening documents with executable content from a trusted source.
Fortunately, Office 2000 and higher includes the ability for the system administrator to
select which sources are trusted and prevent the user from adding trusted sources on their
own (see trusted sources section below).

Office XP/2003 defaults to High security on a general installation, which ensures strong
security for sites without any add-ins or macros.

Very High (Office 2003 only): Applications in Office 2003 have an additional higher
security setting that will disable all VBA in read documents. VBA can still be run in
templates and add-ins if the “Trust installed templates and add-ins” setting is enabled (see
below). This setting can be duplicated in Office XP using a simple work-around (see
recommendations section (High Security Plus Dummy Certificate) for details).

Digital Signatures on VBA
Word, Excel and PowerPoint include the ability to digitally sign the VBA portion of an
Office document using Microsoft’s Authenticode technology.3 This allows the end-user
to verify the source of the document and to know that it was not modified after the
source signed it.

But signing VBA code is not foolproof since the source can sign a document that has
already been infected with malicious executable content. In other words, the plain fact
that a document is signed does not mean it is safe, it simply means the contents of the
VBA portion have not been modified since the signature was applied. Also, the digital
signature is only as secure as the certificate itself. If the owner keeps the certificate on an
insecure machine that is itself vulnerable to attack, then that certificate cannot be trusted.
The user who receives an Office document with signed macros must choose carefully
whom to trust.

3 A thorough discussion of Authenticode is beyond the scope of this paper. The reader can find
more information at Microsoft’s website, microsoft.com.

UNCLASSIFIED
 15

UNCLASSIFIED

When a signed Office XP/2003 document is opened within Office 97, the regular security
warnings apply. The user will still be able to read the document and modify the contents,
but the user will not be able to modify the VBA portion. This will keep the digital
signature intact and still allow compatibility with Office 97.

Trusted Sources
When the user opens a signed document where the source is not yet trusted on that
computer, a warning dialog gives the user the option to disable the macros or trust that
source and enable the macros (figure 3).

Figure 3: Security Warning dialog box in Office. User sees this when security is set to
high or medium and attempts to open a document with signed VBA and the source isn't
trusted.

The “Enable Macros” button is grayed out until the user selects the checkbox to “Always
trust macros from this source”. The user does not have the option for a one-time trust, all
future documents from that trusted source will open without generating a security
warning and the macros will run without prompting the user. To “un-trust” a source, the
user must remove that source from the trusted list in the Security dialog Trusted
Publishers tab (figure 4). The only way to add a trusted source from within the
application interface is to receive a signed document from that source, open it, and select
“Always trust macros from this source” in the dialog in figure 3.

UNCLASSIFIED
 16

UNCLASSIFIED

Figure 4: Security Trusted Sources dialog in Office 2003

Figure 4 is actually a special version of the digital signature dialog box. In this case, the
certificate was created using the selfcert.exe tool that comes with Office XP/2003. Such a
certificate is not authenticated because it is not from a trusted root certification authority.
Such certificates should never be trusted unless the user knows absolutely who created
the certificate (for example, the user himself may have created the certificate using
selfcert.exe and so can trust it). When the certificate is from a trusted root certification
authority, the dialog is slightly different but the options are the same.

Trusting Installed Templates and Add-ins
The user also has the choice to trust all installed templates/add-ins even if the VBA code
is unsigned (checkbox at bottom of dialog shown in figure 4). This means when the user
creates customizations in a template or add-in and places those files in the correct
directory or otherwise installs them according to the applications specifications, the user
can select to trust those automatically without signing them. This is the default and is
similar to Office 97 behavior.

The reason for this feature is convenience for the user. Sometimes it is useful to prevent
false hits or repetitive annoying warnings for documents the user has created locally and
knows to be safe. Multiple false hits may make the user turn security off to avoid warning
messages that are unnecessary. For malicious executable content to take advantage of this
behavior, that code would have to be able to write a file into a specific directory. This is
the chicken-and-the-egg problem. The malicious code author must first get the user to
execute the code before the code can inhabit a specific directory, but once the author gets

UNCLASSIFIED
 17

UNCLASSIFIED

the user to execute the code the author “has” the user and can do anything. In any case,
strict access control on the template and startup directories should be enforced.

The user can also choose to not trust installed add-ins and templates, meaning no
document anywhere will be automatically trusted unless it is signed by a trusted source.
This setting should be used in installations where users do not make a lot of
customizations on their own or where there is weak access control and an attacker could
place documents in specific directories such as the template directory. If templates and
add-ins are not trusted, the user can create a signature with the selfcert.exe tool that
comes with Office XP/2003, trust that signature, and use that signature to sign their own
projects to avoid being warned when they are opening safe documents.

Outlook Security Enhancements
Running malicious attachments was a common and easy avenue for attack in prior
versions of Outlook. Microsoft has remedied this problem with Outlook 2002/2003—file
attachments with unsafe file associations are blocked from being opened or saved (the
default list is given in Appendix B). See [PB04] for more details. Administrators
wishing to change the default list or give the user more latitude in saving off unsafe files
can modify these settings using the Outlook Attachment Security Administration Tools
included in the Office Resource Kits for the two versions. Outlook must be working with
Exchange Server to do these customizations. In general, this will weaken security and is
not recommended.

Maliciously scripting Outlook to automate mass e-mailings was also common in earlier
viruses. Outlook 2002/2003 has thrown up obstacles to using such scripting for
malicious purposes—programmatic access to Outlook is now set to prompt the user and
to limit usage to a short time period. This prevents malicious code from silently and
quickly sending large amounts of e-mail. Access to the Address book by outside code
has been similarly constrained. This can be intrusive to legitimate bulk-mailing
applications, in which case the settings can be relaxed for certain code using the tools
mentioned above.

In addition to this protection against malicious macros, Outlook provides a variety of
mechanisms to provide protection against malicious code. This includes support for the
S/MIME standard which can be used to authenticate the source of a message, protection
against malicious script or components such as ActiveX controls within HTML based e-
mail messages including the capability to completely strip out the HTML, and finally to
control access to the Outlook object model. These settings are described in NSA’s Guide
to the Secure Configuration and Administration of Microsoft Exchange 2000 [6].

Administrative Control of Security Settings

With Office 97, users had complete control over the security warning dialog in their own
environment. Users could disable all macro warnings or just ignore them. Office 2000
and up on Windows NT/2000/XP gives the administrator the ability to force users to have
particular security settings that they cannot change. In an incremental improvement,

UNCLASSIFIED
 18

UNCLASSIFIED

Office 2003/XP have migrated most user settings to the Registry, including the security
options.

Registry Settings

The security settings are stored in the registry, and normally each user’s settings are in
their own section of the registry under the HKEY_CURRENT_USER branch (hereafter
abbreviated to HKCU). Users can modify any keys in that section because each user owns
their own section. However, the administrator can store Office XP/2003 security settings
under the HKEY_LOCAL_MACHINE (abbreviated HKLM) branch and Office XP/2003
applications will read those settings first before checking the HKEY_CURRENT_USER
branch. By setting the permissions on the HKEY_LOCAL_MACHINE keys appropriately,
the administrator can prevent the user from writing to them and thus prevent them from
changing the security settings. This also means that a virus or other attack will not be able
to modify those settings unless it is run by the administrator or some other user with write
access to those keys. Regardless of the specific configuration, it is highly recommended
to take advantage of the ability to lockdown security via the registry settings.

When the administrator stores trusted certificates in the HKLM area of the registry and sets
the permissions to read only for users, the user cannot add trusted sources and must trust
only the sources the administrator enables. For maximum security, it is recommended to
utilize the high security setting and to specify the trusted sources for the organization.
The best way to do this is to begin with a single machine and choose to trust the approved
macro developers for your organization. Once this is completed, use the values from
HKCU\Software\Microsoft\VBA\Trusted to populate
HKLM\Software\Microsoft\VBA\Trusted.

If the administrator wants to have a list of trusted sources but allow the user to add to it,
the administrator can use a Windows Logon policy and add the certificates to the HCKU
branch instead.

The use of registry keys to control the security of Office XP/2003 is described in detail in
the white paper “Microsoft Office 2003 Macro Security” [3]. Appendix A contains
excerpts from that paper showing the relevant keys for Office XP/2003 security settings.
Windows 95 and 98 as well as Windows NT 4.0 with SP 3 or earlier do not support this
feature.

Other Security Features

Office 2000 and later includes an option for the user to specify a virus scanner for Word,
Excel and PowerPoint. Any time those applications open a document, they will first run
the specified scanner on the document. As in general virus scanning, the scanner’s
dictionary must be kept up-to-date, and it will usually miss new viruses. Using this
feature does provide a guarantee that all documents are scanned before being opened.

UNCLASSIFIED
 19

UNCLASSIFIED

In Office 2000 and later the user is able to view the content of VBA macros even though
they are disabled. The user still cannot review add-ins or embedded ActiveX controls
since those are binary. The user can review VBA code and in some cases may be able to
determine if it is harmless. However, Microsoft added the ability to lock or password
protect the VBA portion of a document, which not only prevents someone from adding
macros to the document after the author releases it but also prevents the user from
reviewing those macros. This means a clever virus writer could prevent someone from
detecting that the contents of a macro are harmful by password protecting the VBA
component. Since a digital signature prevents addition or modification of macros after
release while still giving the user the ability to view the macros, it is the preferred method
of locking a document. Macros in a document with the VBA section locked by a
password should never be enabled.

The default application templates, such as Normal.dot, can be password protected. The
password protects the whole template, not just the VBA portion as described in the
previous paragraph. In some macro virus attacks, the virus attempts to copy itself to a
common template and propagate to all users of a system. Microsoft Word’s default
template, Normal.dot, has been a prime target in actual viruses and therefore password
protection is recommended.

Configuration Recommendations

In light of the full capabilities of VBA, one should consider the opening of Office
documents on a desktop system as equivalent to running a binary. Recent versions of
Office have increased the default security for new installations. Depending on the
acceptable amount of risk, however, these defaults should be changed to further restrict
the threat from Executable Content.

For these recommendations, it is assumed that the desktop is running Windows 2000/XP.

Baseline Settings

Patches and Hotfixes
It ought to go without saying, but all available patches and Service Packs should be
applied to Office installations. Microsoft has made strides in adding Office patch
checking to its Windows patch checking tools making this much easier than in the past,
but it isn’t fully integrated. There have been numerous security bugs that allow code to
evade Office Macro security.

In addition, the following desktop settings are advised for any user, in any setting, as a
bare minimum.

•	 Office Macro security should be set to High (default on installation).
•	 Trust Installed Templates and Add-Ins should be unchecked (default on

installation).

UNCLASSIFIED
 20

UNCLASSIFIED

•	 Allow programmatic access to VB Project should be unchecked (default on
installation).

•	 A third-party virus scanner should be registered with Office.
•	 Template/add-in directories should be write-protected – both shared and user.
•	 Internet Explorer security should be set appropriately (see [IE]), for protection of

Word and Outlook.

Removing/Disabling of VBA—Highest Security, Least Functionality

In certain settings, further protection from malicious content may be required. VBA
support in Office can be removed from XP and higher. It can also be left out of
administration deployment.

Figure 5: VBA is a Shared Office Component that can be deselected during installation

This provides the most protection on the desktop, since macros will not run. Over and
above the obvious impact on functionality, it can have adverse side effects on the user
experience. MS Access will not install at all. MS Word will complain repeatedly when
opening a document with macros. Note that the macros will not be removed by a VBA-
less application. Enterprise templates and add-ins will also be affected by such an

UNCLASSIFIED
 21

UNCLASSIFIED

installation, including ones distributed by Microsoft with the installation. This is
recommended only in the most risk averse environments.

VBA can also be disabled after installation through a registry edit (see appendix). This
has much the same effect as the above, except that it does not remove the VBA engine
from the installation.

High Security Plus Dummy Certificate (Very High)

This technique is recommended in environments where local add-ins and templates are
used. VBA is installed, and local templates and add-ins are trusted (if the Trust Installed
Templates and Add-Ins Box is checked), but otherwise users are prohibited from trusting
even signed macros in documents. For Office 2003, simply set the security level to Very
High. For Office XP, the Macro Security Level is set to High. If the
HKLM\Software\Microsoft\VBA\Trusted registry key exists, then the digital certificates
listed there will be the only trusted sources for all users on the machine. Office will
ignore any digital certificates listed at HKCU\Software\Microsoft\VBA\Trusted. Office
will gray out the Always trust macros from this source checkbox in the Security
Warning dialog. If the administrator does not want any user to have any trusted sources,
he should create a never-to-be-used digital certificate, and put that into the HKLM
Trusted list. To help the user see why she cannot remove any trusted sources, the
administrator can name the unused certificate to indicate the trusted sources list is locked
down.

Additional security-relevant settings are available as well, particularly for environments
using Outlook with Exchange Server. For a description of these settings along with
recommended settings, refer to the NSA’s Guide to the Secure Configuration and
Administration of Microsoft Exchange 2000 [6].

Deployment and Maintenance Options

Administrators faced with the prospect of fine-tuning and deploying Office or updating
the settings have a number of tools and options over and above cloning a default PC
installation. These tools handle more than just security settings, but are particularly
useful in implementing security policy for Office XP/2003 to users. The Office Resource
Kit from [ORK] contains these tools and documentation on their use. The purpose of this
section is to make administrators aware of these capabilities.

A single user installation of Office from a CD runs MSI (MS Installation) package, which
contains information about the applications to install and their settings. A
straightforward network deployment involves an administrator creating an installation
point on a shared directory. Users can manually or automatically install from this point.
Administrators who wish to change the MSI packages default have two tools in the ORK:
User Profile Wizards, and the Custom Installation Wizard (CIW). The Profile Wizard
allows the import/export of Office settings to a profile file. The CIW allows the

UNCLASSIFIED
 22

UNCLASSIFIED

administrator to modify almost all configurable aspects of Office, import registry files
and profile files. It generates a transform file that modifies the basic MSI package run
during setup.

Figure 6: The Custom Installation Wizard Security Options

Rolling out new security-relevant changes to already deployed Office applications can
most easily be done through Group Policy under Windows 2000/2003. The ORK
contains a Group Policy Template for such changes. See [GroupPolicy] for more
information.

Extremely large enterprises can use SMS for rolling out and modifying Office
deployments. See [SMS] or microsoft.com for information on SMS.

UNCLASSIFIED
 23

UNCLASSIFIED

Appendix A Registry Settings for Office XP/2003

The following is an excerpt from “Microsoft Office XP Macro Security” [MSOffice],
which lists the registry keys (Windows NT, 2000, XP) for Office security settings.
Information on administratively controlling domain and local environments under
Windows 2000/XP/2003 can be found in [GroupPolicy]. The variable <VERSION>
should be replaced by 10.0 for Office XP, and 11.0 for Office 2003.

For user controlled security settings:

HKCU\Software\Microsoft\Office\<VERSION>\Excel\Security\Level=2
HKCU\Software\Microsoft\Office\<VERSION>\Word\Security\Level=3
HKCU\Software\Microsoft\Office\<VERSION>\PowerPoint\Security\

Level=2
HKCU\Software\Microsoft\Office\<VERSION>\Outlook\Security\

Level=1
HKCU\Software\Microsoft\Office\<VERSION>\Access\Security\

Level=1
HKCU\Software\Microsoft\Office\<VERSION>\Excel\Security\

DontTrustInstalledFiles=0
HKCU\Software\Microsoft\Office\<VERSION>\Word\Security\

DontTrustInstalledFiles=0
HKCU\Software\Microsoft\Office\<VERSION>\PowerPoint\Security\

DontTrustInstalledFiles=0
HKCU\Software\Microsoft\Office\<VERSION>\Outlook\Security\

DontTrustInstalledFiles=0
HKCU\Software\Microsoft\Office\<VERSION>\Access\Security\

DontTrustInstalledFiles=0
HKCU\Software\Microsoft\VBA\Trusted

The Security\Level value code is as follows: 1 is Low, 2 is Medium, 3 is High. The
Security\DontTrustInstalledFiles value code is: 0 is False, 1 is True. These keys will not
exist in the registry if the user has not changed them from the default setting.

To take the control of the security settings out of the hands of the user, the administrator
should use the following keys. Note how conveniently the path of these security registry
keys in HKLM matches the path of the subservient registry keys in HKey_Current_User.

HKLM\Software\Microsoft\Office\<VERSION>\Excel\Security\Level=2
HKLM\Software\Microsoft\Office\<VERSION>\Word\Security\Level=3
HKLM\Software\Microsoft\Office\<VERSION>\PowerPoint\Security\

Level=2
HKLM\Software\Microsoft\Office\<VERSION>\Outlook\Security\

Level=1
HKLM\Software\Microsoft\Office\<VERSION>\Access\Security\

Level=1
HKLM\Software\Microsoft\Office\<VERSION>\Excel\Security\

DontTrustInstalledFiles=0
HKLM\Software\Microsoft\Office\<VERSION>\Word\Security\

DontTrustInstalledFiles=0
HKLM\Software\Microsoft\Office\<VERSION>\PowerPoint\Security\

DontTrustInstalledFiles=0

UNCLASSIFIED
 24

UNCLASSIFIED

HKLM\Software\Microsoft\Office\<VERSION>\Outlook\Security\
DontTrustInstalledFiles=0

HKLM\Software\Microsoft\Office\<VERSION>\Access\Security\
DontTrustInstalledFiles=0

HKLM\Software\Microsoft\VBA\Trusted

Maximum Security—no macros or add-ins can be run by the user!

HKLM\Software\Microsoft\Office\<VERSION>\Excel\Security\Level=3
HKLM\Software\Microsoft\Office\<VERSION>\Word\Security\Level=3
HKLM\Software\Microsoft\Office\<VERSION>\PowerPoint\Security\Lev

el=3
HKLM\Software\Microsoft\Office\<VERSION>\Outlook\Security\Level=

3
HKLM\Software\Microsoft\Office\<VERSION>\Access\Security\Level=3
HKLM\Software\Microsoft\Office\<VERSION>\Excel\Security\DontTrus

tInstalledFiles=1
HKLM\Software\Microsoft\Office\<VERSION>\Word\Security\DontTrust

InstalledFiles=1
HKLM\Software\Microsoft\Office\<VERSION>\PowerPoint\Security\Don

tTrustInstalledFiles=1
HKLM\Software\Microsoft\Office\<VERSION>\Outlook\Security\DontTr

ustInstalledFiles=1
HKLM\Software\Microsoft\Office\<VERSION>\Access\Security\DontTru

stInstalledFiles=1
HKLM\Software\Microsoft\VBA\Trusted\”No certificate will be

trusted. -
InfoServices”=hex:d3,0f,d6,00,91,21,bf,51,7e,60,48,a2,99,b
a,25,00,b7,96,08,01

UNCLASSIFIED
 25

UNCLASSIFIED

References and Resources

[DOD2001] DOD Mobile Code Policy, memorandum signed November 2001 by ASD, C3I.
[MSOffice] Microsoft Office 2003 Macro Security White Paper, 2003, available at

http://www.microsoft.com/Office/ORK/2003.
[MSMacro] Chi, Darren. Microsoft Office XP/2003 and Security Against Macro Viruses, available at

http://securityresponse.symantec.com/avcenter/reference/o2secwp.pdf.
[ORK] Office [XP|2003] Resource Kit, available from www.microsoft.com/office/ork/xp and

www.microsoft.com/office/ork/2003 respectively.

NSA Guidance Documents
All of these documents can be found at http://www.nsa.gov

[Office97] Microsoft Office 97 Executable Content Security Risks and Countermeasures, 1999
[Office2000] Microsoft Office 2000 Executable Content Security Risks and Countermeasures, 2002
[Exchange] Guide to the Secure Configuration of Microsoft Exchange, Jan 2002
[Windows] National Security Agency, Windows 2000/XP Security Recommendation Guidelines, multiple

documents available from http://www.nsa.gov.
[GroupPolicy] National Security Agency, Guide to Securing Microsoft Windows 2000 Group Policy,

September 2001
[Outlook] Outlook E-mail Security in the Midst of Malicious Code Attacks, Trent Pitsenbarger and Paul

Bartock, January 2004
[SMS] Secure Configuration of Systems Management Server, to be released

Suggested Reading:

Bott, Ed, and Leonhard, Woody, Special Edition Using Microsoft Office 2003, Que Corporation,
Indianapolis, IN, 2003.

Byrne, Randy, Building Applications with Microsoft Outlook 2000 Technical Reference, Microsoft
Press, Redmond, WA, 1999.

Microsoft Corporation, Microsoft Office XP/2003 Visual Basic Programmer’s Guide, Microsoft
Corporation, Redmond, WA, 1999.

UNCLASSIFIED
 26

